
96 The Delphi Magazine Issue 50

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Property Editor Question

QI am in the process of writing
a property editor. How do I

get the class name of the object
whose properties I am editing?

AThe TPropertyEdit class
(and all its descendants) de-

fines a GetComponentmethod to give
you access to the component
selected on the form designer (or
one of the components, if there are
any components selected). So
GetComponent(0).ClassName will
give the class name and Get-
Component(0).ClassType gives you
the class reference.

Page Control Query

QIs there an easy way of find-
ing the active tab selected in

a TPageControl component?

AYou can either index into the
page control’s read-only

Pages property with its Active-
PageIndex property:

PageControl1.Pages[
PageControl1.ActivePageIndex]

or simply use the ActivePage prop-
erty (PageControl1.ActivePage).

Both of these return the TTabSheet
object that is active in the page
control. I think the key word there
is page, instead of tab.

Customised Alias

QI need to access one of two
similar local databases, de-

pending on a given parameter
when the application starts (read
from an INI file). The alias name will
be the same for both but, inside the
alias, I need to redirect the path to
one directory or the other. How
can I programmatically alter the
path of an alias for a standard
database?

ADrop a TDatabase object on
the form and set the proper-

ties like this (you can use the Data-
base Editor by right-clicking the
TDatabase object). Set AliasName to
be your BDE alias name, chosen
from the list. Set DatabaseName to be
some different string (note that in
the Database Editor, the Database-
Name property is set with the edit
control labelled Name). Now make
sure your TTable or TQuery compo-
nents use the value of the database

component’s DatabaseName prop-
erty, rather than the real BDE alias.

At runtime, whilst the database
component is not connected (Con-
nected is False), you can use:

Database1.Values[‘PATH’] :=
‘c:\TheRequiredPath’;

When you open a table or query,
the database component will then
connect to the appropriate
database.

Customised Status Bar

QIs it possible to change the
colour of the text in a status

bar’s panels?

AI couldn’t find an easy way,
so the best I can think of is to

set the Style property of the
TStatusPanel in question to
psOwnerDraw, then use the
OnDrawPanel event to do whatever
customised drawing you want.

COM Server Components

QBefore purchasing Delphi 5,
I am interested in finding out

a little more about the compo-
nents on the Servers page of the
component palette. How many
components are there, and what
exactly do they do?

AThere are 32 COM server
components on the Servers

page. They represent the COM ob-
jects surfaced from the applica-
tions that make up Microsoft
Office 97, and described in the vari-
ous type libraries that accompany

➤ Figure 1: Delphi 5’s COM
server components.

TWordApplication TWordDocument TWordFont

TWordParagraphFormat TWordLetterContent TBinder

TExcelQueryTable TExcelApplication TExcelChart

TExcelWorksheet TExcelWorkbook TExcelOLEObject

TDoCmd TAccessHyperlink TAccessForm

TAccessReport TAccessReferences TPowerPointApplication

TPowerPointSlide TPowerPointPresentation TOutlookApplication

TAppointmentItem TContactItem TJournalItem

TMailItem TMeetingRequestItem TNoteItem

TPostItem TRemoteItem TReportItem

TTaskItem TTaskRequestItem

➤ Table 1

October 1999 The Delphi Magazine 97

that package. Figure 1 shows my
undocked component palette’s
Servers page. Table 1 is a list of all
the components installed there.

The fact that all these compo-
nents are installed onto the com-
ponent palette is very convenient,
but not anything we could not do
for ourselves. You see, Delphi 5’s
type library importer goes consid-
erably further than those that were
supplied with Delphi 3 and 4. When
you import a type library now, as
well as manufacturing a unit
containing all the interfaces, dis-
patch interfaces, enumerations
and so on, it also manufactures
components.

For every coclass in the type
library, Delphi optionally creates a
component class based upon the
new TOleServer class to provide
simplified access to COM Automa-
tion. A component registration call
is also added to the unit’s Register
routine. You can see the IDE
checkbox that dictates whether
this happens in Figure 2. The equiv-
alent command line tool
TLIBIMP.EXE has a -L+ command
line switch that does the same
thing.

What Inprise have done is run
the type library importer across all
the type libraries that come with
Office 97, and installed all the
resulting components on the
Servers page of the component
palette (the component glyphs
used also come from the type
libraries). Compiled versions of all
these type library import units are
stored in Delphi’s Imports
directory, whilst the source files
can be found in Delphi’s
OCX\Servers directory.

In short, it doesn’t really matter
that the components exist on the
palette. If they didn’t, Delphi 5
offers the ability to make them

➤ Figure 2: Delphi 5 importing
a type library.

exist. What does matter is the
introduction of the very handy
TOleServer class, and the improve-
ments to the type library importer.
So what do these TOleServer
descendants do?

Firstly, they offer various ways
of connecting to the target COM
interface. The ConnectKind prop-
erty can be set to ckRunning-
Instance to ensure that no new
instance is started. The compo-
nent will connect to an instance
that is already running, or if none
can be found will raise an excep-
tion. A value of ckNewInstance will
start a new instance to connect to,
even if one is already running.
ckRunningOrNew will try to connect
to a running instance, but if none
can be found will start a new
instance. ckRemote attempts to con-
nect to an instance of the server
running on the machine named by
the RemoteMachine property.
Finally, ckAttachToInterface will
not bind to a server, but instead
waits for you to supply an appro-
priate interface reference using a
call to the ConnectTo method.

The component defines its own
versions of all the methods and
properties defined in the corre-
sponding COM interface. Any
methods that have optional param-
eters defined in the type library
have multiple overloaded versions
to allow optional parameters to be
omitted. Additionally, if the
coclass specifies that it has an
events interface, the component
will surface as many of the events
as it can into the Object Inspector.
This means you can easily handle
COM server events without
worrying about connection point
interfaces and all the rest of the
misery that goes with it.

Just to give you an idea of how
these COM server components
operate, and how they differ from
normal COM programming, here

are some comparative listings
(from the sample Delphi 5 project
WordAuto.Dpr). Listing 1 shows
some late bound Automation of
Microsoft Word using Variant vari-
ables. The code starts a fresh copy
of Word, making it visible, makes a
new document with a bit of text in,
saves the document (without
adding the filename to Word’s file
history list) and then shuts Word.
The call to SaveAs is quite short
thanks to Delphi supporting
optional named arguments with
Automation through a Variant.

Automation with a Variant is
quite easy to write, but normally
less efficient than using direct
interfaces. Also, you have to wait
until runtime to find out whether
you spelt any methods or
properties incorrectly.

Listing 2 shows the equivalent
logic expressed, but using early
bound Automation with direct
v-table access through interface
references. As you can see,
optional arguments have to be
specified, although you can use
EmptyParam variable (in Delphi 4 or
later) to specify the default value.
Consequently, the calls to SaveAs
and Quit suddenly become longer.

Listing 3 works after dropping a
TWordApplication called WordAppl
-ication on the form, with its
ConnectKind property set to
ckNewInstance, then dropping a
TWordDocument called WordDocument
on the form with ConnectKind set to
ckAttachToInterface.

uses
ComObj;

procedure TForm1.btnVariantClick(Sender: TObject);
var WordApplication, WordDocument: Variant;
begin
WordApplication := CreateOleObject('Word.Application');
WordApplication.Visible := True;
WordDocument := WordApplication.Documents.Add;
WordApplication.Selection.TypeText('Hello world');
WordDocument.SaveAs(FileName := 'C:\Doc.Doc', AddToRecentFiles := False);
WordApplication.Quit

end;

➤ Listing 1

98 The Delphi Magazine Issue 50

➤ Above: Listing 2 ➤ Below: Listing 3

procedure TForm1.btnInterfaceClick(Sender: TObject);
var
WordApplication: _Application;
WordDocument: _Document;
FileName, VariantFalse: OleVariant;

begin
WordApplication := CoWordApplication.Create;
WordApplication.Visible := True;
WordDocument := WordApplication.Documents.Add(EmptyParam, EmptyParam);
WordApplication.Selection.TypeText('Hello world');
FileName := 'C:\Doc.Doc';
VariantFalse := False;
WordDocument.SaveAs(FileName, EmptyParam, EmptyParam, EmptyParam, VariantFalse,
EmptyParam, EmptyParam, EmptyParam, EmptyParam, EmptyParam, EmptyParam);

WordApplication.Quit(VariantFalse, EmptyParam, EmptyParam);
end;

The differences between Listing
2 and Listing 3 are the lack of inter-
face reference variable declara-
tions (the components have their
own declarations in the form
class), and the shorter parameter
lists to some of the method calls.
The Quit method has three param-
eters defined in the interface, but
since all are optional, the
TWordApplication component
defines four versions of it (see List-
ing 4). The document’s SaveAs
method is defined a whopping total
of twelve times with different
parameter lists.

Fancy Font Dialog

QI have added a TFontDialog
component to a form and

have encountered the following
problem. TFontDialog has three
events available, OnApply, OnClose
and OnShow. I find that OnShow works
fine, and clicking the dialog’s Apply
button triggers the OnApply event
just fine. However, OnClose is
triggered for both OK and Cancel,
meaning that I cannot distinguish
between these buttons. Am I
missing something or is this a
Delphi bug?

AThe way this component is
designed to be used is as

follows. OnShow and OnClose are
designed to allow you to set up any
special stuff you might need when
the dialog is first shown, and then

procedure TForm1.btnComponentClick(Sender: TObject);
var
FileName, VariantFalse: OleVariant;

begin
WordApplication.Visible := True;
WordDocument.ConnectTo(WordApplication.Documents.Add(EmptyParam, EmptyParam));
WordApplication.Selection.TypeText('Hello world');
FileName := 'C:\Doc.Doc';
VariantFalse := False;
WordDocument.SaveAs(FileName, EmptyParam, EmptyParam,
EmptyParam, VariantFalse);

WordApplication.Quit;
end;

procedure Quit; overload;
procedure Quit(var SaveChanges: OleVariant); overload;
procedure Quit(var SaveChanges: OleVariant; var OriginalFormat: OleVariant);
overload;

procedure Quit(var SaveChanges: OleVariant; var OriginalFormat: OleVariant;
var RouteDocument: OleVariant); overload;

tidy it up when the dialog closes.
That’s it.

For actually taking the user’s
font request and dealing with it,
you have two choices. Firstly, if
you do not set up an OnApply event
handler (and do not have the
fdApplyButton option set), you will
not get an Apply button. This
means that you call the dialog’s
Execute method and decide
whether to do anything based
upon this method’s Boolean return
value.

The second option is where you
have an OnApplymethod, and so get
an Apply button. Here you put the

code that deals with font changes
in the OnApply event handler. To
invoke the dialog, you still call the
Execute method and, if it returns
True, manually execute the OnApply
event handler. The code in there
can check things out to ensure
pointless code is not executed,
such as setting an object’s font
that has already been set by the
user pressing the Apply button.

You are in this latter case of
having an Apply button. A simple
sample project called FontDlg.Dpr
is included on this month’s
CD-ROM. It has a speedbutton to
invoke a font dialog, and a couple
of controls on the form that have
fonts. I chose an edit control and a
rich edit. If the edit control is
active when the button is pressed,
the code will set its font (assuming
Cancel is not pressed in the font
dialog). If the rich edit is active, the
selected text will have its font
changed. The code can be seen in
Listing 5.

When the speedbutton is
clicked, it calls the dialog’s Execute
method. Assuming it returns True
(OK was pressed), and the OnApply
event handler exists, the OnApply
handler is called. Of course it
could already have been called
thanks to the Apply button being
pressed, but this simple example
doesn’t check before re-executing
the code in that event handler.

procedure TForm1.SpeedButton1Click(Sender: TObject);
begin
if ActiveControl is TEdit then
FDlg.Font := TEdit(ActiveControl).Font

else if ActiveControl is TRichEdit then
TRichEdit(Activecontrol).SelAttributes.Assign(FDlg.Font);

//Launch dialog. If it returns True, and
//we have an OnApply handler, call it
if FDlg.Execute and Assigned(FDlg.OnApply) then
FDlg.OnApply(FDlg, 0)

end;
procedure TForm1.FDlgApply(Sender: TObject; Wnd: HWND);
begin
//Could check here that there is in fact a need to apply
//the font, by comparing, but for brevity, I'll skip it
if ActiveControl is TEdit then
TEdit(ActiveControl).Font := TFontDialog(Sender).Font

else if ActiveControl is TRichEdit then
TRichEdit(ActiveControl).SelAttributes.Assign(TFontDialog(Sender).Font)

end;

➤ Above: Listing 4 ➤ Below: Listing 5

October 1999 The Delphi Magazine 99

Multi-User Delphi Installation

QI installed Delphi 4 on a Win-
dows NT4 workstation while

logged in as one user, making sure
the shortcuts are put in the correct
place to be seen by all users. When
I log back into the same machine as
another user and run Delphi none
of the components appear and all
the search directories vanish. I can
reinstall all the components and
set the directories again, but this is
not an ideal situation. Is there a
known solution to this?

AEach user has their own area
in the Windows registry. As

various different people log in,

the HKEY_CURRENT_USER
hive maps itself onto
to a different branch
under HKEY_USERS.
Delphi stores all its in-
formation in the regis-
try between sessions,
including what com-
ponent packages are
installed. When you

log in as another user, you miss out
on the previous user’s session in-
formation which is no longer ac-
cessible. This means that when
Delphi tries to read the list of
installed component packages
from the registry, it finds none, and
so the component palette stays
empty.

You have three ways of fixing
this problem. Firstly, you could
reinstall when logged in as the
other user, making sure you use
exactly the same installation
options and directories as before.
This is by no means an ideal
situation.

The second option applies to
Delphi 4 and later. The installation
program offers a registry only
installation option for exactly this

type of situation. Once you have
installed Delphi normally as one
user, log in as another user and
install again. This time however,
remember to check the Registry
installation option (see Figure 3).
Assuming you keep all the other
installation options the same, this
will populate this second user’s
area of the registry with all the
Delphi settings needed to make it
work, copying a minimum set of
files across.

The third option is an alterna-
tive way of doing the same as the
second option, and applies to any
32-bit version of Delphi, not just 4.
Log in as the original user, launch
REGEDIT.EXE and navigate to
Delphi 4’s area in the registry:

HKEY_CURRENT_USER\Software\
Borland\Delphi\4.0

Now export the whole Delphi 4 reg-
istry hierarchy to a .REG file by
choosing Registry | Export Regis-
try File.... Log in as another user,
locate the .REG file in Windows
Explorer and double click it. This
will merge all those entries into the
current user’s area of the registry.

Components
On The Clipboard

QI am trying to put multiple
components onto the clip-

board. ClipBoard.SetComponent
works fine for a singular compo-
nent, but fails for more than one. Is
there an easy fix or should I hack
the VCL code?

AWell, in this case you don’t
need to do much hacking, as

I’ve done it for you J. Before em-
barking on the solution, let’s get a
little background information on
the clipboard, and writing data to
it. Incidentally, all this applies to
all versions of Delphi.

Any unique form of data that
goes on the clipboard has to be
marked with a registered format. A
number of standard formats exist,
such as text (CF_TEXT), bitmap
(CF_BITMAP), palette (CF_PALETTE),
metafile picture (CF_METAFILEPICT)
and so on. The constants for these
formats are defined for you in

➤ Figure 3:
Registry-only
installation.

procedure TForm1.Timer1Timer(Sender: TObject);
var
I: Integer;
Buf: array[0..255] of Char;
Fmt: String;

begin
ListBox1.Items.Clear;
for I := 0 to ClipBoard.FormatCount - 1 do begin
GetClipboardFormatName(ClipBoard.Formats[I], Buf, SizeOf(Buf));
Fmt := StrPas(Buf);
if Fmt = '' then
case ClipBoard.Formats[I] of
CF_TEXT: Fmt := 'CF_TEXT';
CF_BITMAP: Fmt := 'CF_BITMAP';
CF_METAFILEPICT: Fmt := 'CF_METAFILEPICT';
CF_SYLK: Fmt := 'CF_SYLK';
CF_DIF: Fmt := 'CF_DIF';
CF_TIFF: Fmt := 'CF_TIFF';
CF_OEMTEXT: Fmt := 'CF_OEMTEXT';
CF_DIB: Fmt := 'CF_DIB';
CF_PALETTE: Fmt := 'CF_PALETTE';
CF_PENDATA: Fmt := 'CF_PENDATA';
CF_RIFF: Fmt := 'CF_RIFF';
CF_WAVE: Fmt := 'CF_WAVE';
CF_OWNERDISPLAY: Fmt := 'CF_OWNERDISPLAY';
CF_DSPTEXT: Fmt := 'CF_DSPTEXT';
CF_DSPBITMAP: Fmt := 'CF_DSPBITMAP';
CF_DSPMETAFILEPICT: Fmt := 'CF_DSPMETAFILEPICT';
CF_UNICODETEXT: Fmt := 'CF_UNICODETEXT';
CF_ENHMETAFILE: Fmt := 'CF_ENHMETAFILE';
CF_HDROP: Fmt := 'CF_HDROP';
CF_LOCALE: Fmt := 'CF_LOCALE';
CF_DSPENHMETAFILE: Fmt := 'CF_DSPENHMETAFILE';

else
Fmt := 'Unknown clipboard format'

end;
ListBox1.Items.Add(Fmt)

end;
end;

➤ Listing 6

100 The Delphi Magazine Issue 50

the Windows unit. Most clipboard
formats also have a textual
description available (apart from
some standard ones).

The Delphi ClipBrd unit defines
two new clipboard formats.
CF_PICTURE is defined with the
string Delphi Picture and CF_COM-
PONENT is defined with the string
Delphi Component. At any time, data
may be stored in the clipboard in a
number of formats simultaneously.
ClipList.Dpr is a simple project
that has a listbox on it. A timer is
used to trigger some code every
half a second that enumerates the
clipboard formats, getting their
numeric values, and then asking
Windows for their textual descrip-
tions. This information is fed into a
listbox, so that as you copy things
onto the clipboard you can see
what formats are available (Listing
6 shows the simple code).

My first thought on the subject
was that the Delphi form designer
can copy multiple components
onto the clipboard, so I wondered
what clipboard format was being
used. Running this ClipList pro-
gram and then copying some com-
ponents onto the clipboard from a
form designer, it told me that
Delphi stores components on the
clipboard in several formats. As
well as text format (CF_TEXT),
Delphi uses a format described as
Delphi Components. This is just dif-
ferent enough to the format regis-
tered by the ClipBrd unit (Delphi
Component) to mean that extra
coding will be required.

The code which implements the
solution registers a clipboard
format with the same string as

used by Delphi, and assigns it to a
clipboard format variable, CF_COM-
PONENTS. That’s a good start, but
how does the clipboard take and
give information? To add arbitrary
information to the clipboard
requires you to allocate memory,
using GlobalAlloc with specified
flags. Then you copy the data in
question into the memory block.
But since GlobalAlloc returns a
memory handle, you have to first
call GlobalLock to get a pointer to
the memory, copy the data into the
memory block, and then call
GlobalUnlock afterwards.

So once we have some data to
put in the clipboard, we know what
to do, but we first need to work out
how to get several components
into a block of memory that we can
work with. The routine ClipBoard-
SetComponents takes an open array
of TComponent references. It loops
through the components passed in
to it and then passes them on to the
WriteComponent method of a
TMemoryStream object.

This means we now have several
memory versions of the compo-
nents in question. We can allocate
a suitably sized block of memory,
copy the contents of the stream to
it (with appropriate lock and
unlock calls), and pass it off to the
clipboard. The ClipBoard object
has a SetAsHandle method to
achieve this. Listing 7 shows what
we have here.

With this code in place, an appli-
cation can copy some components
to the clipboard with a call such as
the following:

ClipBoardSetComponents(
[Label1, Memo1,
ListBox1]);

With the components on the clip-
board, you can switch over to a
copy of Delphi, and paste the com-
ponents on to the form designer.
That deals with the question as it
was posed, but presumably the
questioner also wants to know
how to read multiple components
from the clipboard. This means we
need an implementation of Clip-
BoardGetComponents to complete
the pair.

The logic will go like this. We
have to open the clipboard for
reading, then ask the clipboard for
the data in the CF_COMPONENTS
format. It gives the data over as a
memory handle that needs locking
(and later unlocking). Once we
have access to the raw data, the
memory block should be copied
over to a VCL memory stream.
With the stream ready to be read
from, we can repeatedly read com-
ponents from it, setting their
owner and parent (if appropriate)
until there are no more left.

To see if there are any more
components left to be read
requires some care. The block of
memory owned by the clipboard
will not exactly match the sum of
the size of all components stored
there. This is because Windows
memory allocations are typically
rounded up, leaving several spare
bytes. To check if another compo-
nent is there to be read, the code
checks for the presence of the
standard VCL stream signature,
TPF0. Listing 8 shows a possible
implementation.

There are possible problems
that could crop up. For example if
you try and make, say, a form own
a component with the same name
as one it already owns, an

var
CF_COMPONENTS: Word;

procedure ClipBoardSetComponents(Components: array of
TComponent);

var
ClipStream, TxtStream: TMemoryStream;
Loop: Integer;
Data: THandle;
DataPtr: Pointer;

begin
ClipStream := TMemoryStream.Create;
try
for Loop := Low(Components) to High(Components) do
ClipStream.WriteComponent(Components[Loop]);

{ Reset stream pointer to beginning }
ClipStream.Position := 0;
{ Allocate memory block to give to clipboard }
Data := GlobalAlloc(GMEM_MOVEABLE and GMEM_DDESHARE,
ClipStream.Size);

if Data = 0 then

OutOfMemoryError;
{ Lock it for writing }
DataPtr := GlobalLock(Data);
try
ClipStream.Read(DataPtr^, ClipStream.Size);

finally
{ Unlock it }
GlobalUnlock(Data)

end;
{ Clipboard takes ownership of memory block, so we can
forget it }

ClipBoard.SetAsHandle(CF_COMPONENTS, Data);
finally
ClipStream.Free;

end;
end;
initialization
CF_COMPONENTS := RegisterClipboardFormat('Delphi
Components');

end.

➤ Listing 7

October 1999 The Delphi Magazine 101

exception will be raised. Also,
there are requirements that must
be met before it works. Before you
can pass an instance of a compo-
nent into an application, its class
must be passed to a call to either
RegisterClass or RegisterClasses.
However, having done this, you
can copy a selection of compo-
nents from a form designer onto
the clipboard, and then paste the
contents of the clipboard into an
application, using a call to
ClipBoardGetComponents.

There are restrictions on how
successfully this works. When
Delphi copies components onto
the clipboard, it copies a textual
version as well as the binary
streamed component version. This
means you can copy from a form
designer and paste into Notepad
(and vice versa). My code only
stores the binary version of com-
ponents onto the clipboard.

Also, when copying components
to the clipboard, ClipBoard-
SetComponents will not cater for
children of anything copied, unlike
a form designer. The stream’s
WriteComponent method writes out
the specified component, along
with anything it owns, but not any
of its children. Both these issues
could be worked out, given some
time, but hopefully this code
should solve the immediate
problem at hand.

A simple demo program,
ClipComp.Dpr, has a button that

copies some components from a
panel onto the clipboard and then
pastes them back onto the form.
Listing 9 shows the button event
handler and shows that the origi-
nal components have to have their
Name properties set to blank strings
to avoid exceptions. The Clip-
BoardSetComponents and ClipBoard-
SetComponents routines are defined
in the ClipHelp unit.

Custom TLabel Component

QI have some TLabel fields
showing my homepage and

email information. When I move
the mouse cursor on these fields,
the OnMouseMove event handler
changes their font attributes to
look like they are clickable
hyperlinks. However, when my
mouse is not on top of these fields, I
want their font attributes reset
back to their original values. What
should I do?

AWhilst the OnMouseMove event
allows you to change the be-

haviour of a control when the
mouse moves over it, there is no
event that triggers when the mouse

leaves. However, if you make a new
component based upon TLabel (or
even TCustomLabel, if many of the
TLabel properties are of no rele-
vance) you can handle some dedi-
cated component messages which
should help you fulfil your require-
ments.

Delphi controls have two mes-
sages that are sent to them when
the mouse is entering the control
or leaving it: cm_MouseEnter and
cm_MouseLeave. If you write a mes-
sage handler for each of these,
then the component can look after
the font attribute changing for you.
Have a look at the code in Listing
10 from the HLLabel unit, which
compiles in any version of Delphi.
It shows a simple class inheriting
from TCustomLabel with the two
message handlers in place. Two
properties dictate what colour the
hyperlink will display as and what
font style will be used.

The component also reacts to
being clicked on. In the overridden
Click method, the URL displayed
in the label’s caption is passed
along to a call to ShellExecuteEx in

procedure ClipBoardGetComponents(Owner, Parent: TComponent);
var
Data: THandle;
DataPtr: Pointer;
ClipStream: TMemoryStream;
Comp: TComponent;

const
FilerSignature: array[1..4] of Char = 'TPF0';

begin
ClipBoard.Open;
try
Data := GetClipboardData(CF_COMPONENTS);
if Data = 0 then
Exit;

DataPtr := GlobalLock(Data);
if DataPtr = nil then
Exit;

try
ClipStream := TMemoryStream.Create;
try
ClipStream.WriteBuffer(DataPtr^, GlobalSize(Data));
ClipStream.Position := 0;
try
repeat
{ Check for VCL stream signature before
proceeding }

if PLongint(Longint(ClipStream.Memory) +
ClipStream.Position)^ <>

Longint(FilerSignature) then
Exit;

Comp := ClipStream.ReadComponent(nil);
if Comp is TControl then
TControl(Comp).Parent :=
Parent as TWinControl;

try
Owner.InsertComponent(Comp)

except
Comp.Free;
raise

end
{ We will probably leave thanks to the signature }
{ before check this condition is met, as Windows }
{ memory is rounded up in size, so there will be }
{ slack }
until ClipStream.Position = ClipStream.Size

except
Exit

end
finally
ClipStream.Free

end
finally
GlobalUnlock(Data)

end
finally
ClipBoard.Close

end

➤ Listing 8
procedure TForm1.Button1Click(Sender: TObject);
begin
ClipBoardSetComponents([Label1, Edit1, Image1]);
Label1.Name := '';
Edit1.Name := '';
Image1.Name := '';
ClipBoardGetComponents(Self, Self)

end;
...
initialization
RegisterClasses([TImage, TEdit, TLabel])

end.

➤ Listing 9

102 The Delphi Magazine Issue 50

order to get the installed web
browser to navigate to it.

The logic in the listing is (hope-
fully) short and simple enough to
be self-explanatory. Just install the
component unit and try it out.

Figure 4 shows a simple form at
runtime with two THyperLinkLabel
components on it. As you can see,
the first one looks like a normal
label because the mouse is not on
it. The second label has the mouse
pointing at it and so looks like a
hyperlink.

User-Defined Exceptions

QI have a requirement to cre-
ate a new exception class

that contains more than just the
Message property. I have tried to in-
herit this new class from the Excep-
tion class, but my attempts to
override the constructor fail
because it is a static method. How
do I do it?

AYou only need to override a
virtual (polymorphic) con-

structor, which the Exception class
does not have. TComponent has a
virtual constructor, to allow the
generic form streaming code in
the VCL to recreate a form, and all
the components on it, when it is
either loaded at design-time or cre-
ated at runtime. No other VCL

classes have
polymorphic
constructors.

Since Exception
(or anything
inherited from it
in the VCL) has a static construc-
tor, you just redefine it. There is no
need to use virtual or override
(required only in the case of poly-
morphic methods). If you wish to
chain back on to the original con-
structor, you can do this by using
the inherited reserved word in con-
junction with a call to the old con-
structor, with the relevant
parameters. If you have the VCL
source, you should carefully exam-
ine the definition of EDBEngineError
in the DBTables unit (or DB unit in
Delphi 1 and 2), which is repro-
duced in Listing 11.

Listing 12 shows a custom excep-
tion object with a modified con-
structor, along with the
constructor’s implementation and
a sample statement raising the
exception.

More On Active OLE Object

QI read your answer to the Ac-
tive OLE Object question in

Issue 46 with great interest be-
cause it seemed to address some of
the problems I am currently trying
to resolve. However, it doesn’t
quite answer everything and I won-
der if you could give me some ideas

on how to extend this to a DCOM
environment and also using an NT
service. I will explain briefly what
I’m trying to achieve.

I am developing an application
which involves an NT service
application that is constantly com-
municating with some external
hardware. This application stores
data in a database and also acts as
an automation server to the GUI
client application.

The client will run either on the
same machine as the server, or on
a remote machine that connects
using Dial-Up Networking. The
client will be able to view various
reports from the database, but
also communicate with the exter-
nal hardware via COM interfaces
provided by the server.

I have an early implementation
of this working except that the
server is currently a standard
executable. The client uses
CreateRemoteComObject to ‘connect’
to the server and this will launch
the server if it is not already
running.

My question is, how do I achieve
this if the server is a service? The

➤ Figure 4: Hyperlink-style label.

THyperLinkLabel = class(TCustomLabel)
private
{ Property state holders }
FHyperlinkColour, FOldColour: TColor;
FHyperlinkStyle, FOldStyle: TFontStyles;

protected
procedure Click; override;
{ VCL message handlers }
procedure CMMouseEnter(var Msg: TMessage);
message cm_MouseEnter;

procedure CMMouseLeave(var Msg: TMessage);
message cm_MouseLeave;

public
constructor Create(AOwner: TComponent); override;

published
{ New properties }
property HyperlinkColour: TColor
read FHyperlinkColour write FHyperlinkColour
default clBlue;

property HyperlinkStyle: TFontStyles
read FHyperlinkStyle write FHyperlinkStyle;

{ Make these hidden properties/events show up on the
Object Inspector }

property Caption;
property Font;
property ParentShowHint;
property ShowHint;
property OnClick;

end;
constructor THyperLinkLabel.Create(AOwner: TComponent);
begin
inherited Create(AOwner);
FHyperlinkColour := clBlue;

FHyperlinkStyle := [fsUnderline];
FOldColour := Font.Color;
FOldStyle := Font.Style;

end;
procedure THyperLinkLabel.Click;
var
{ For PChar version of URL. Written for Delphi 1
compatibility }

URLBuf: array[0..255] of Char;
begin
inherited Click;
StrPCopy(URLBuf, Caption);
ShellExecute(Application.Handle,
nil, URLBuf, nil, nil, sw_ShowNormal)

end;
procedure THyperLinkLabel.CMMouseEnter(var Msg: TMessage);
begin
inherited;
FOldStyle := Font.Style;
FOldColour := Font.Color;
Font.Style := FHyperlinkStyle;
Font.Color := FHyperlinkColour;

end;
procedure THyperLinkLabel.CMMouseLeave(var Msg: TMessage);
begin
inherited;
Font.Style := FOldStyle;
Font.Color := FOldColour;

end;
procedure Register;
begin
RegisterComponents('Clinic', [THyperLinkLabel]);

➤ Listing 10

104 The Delphi Magazine Issue 50

service should be set up to start
automatically, so I presume that
the client should be able to use the
ROT to connect to it, but can you
do this with a remote machine?

AThis is a good question. My
current understanding is

that the ROT is only valid for the
current machine, so we will look at
a slightly different solution.

One way around it might be to
have a small DCOM sentinel appli-
cation, whose job is to be
kick-started by the local/remote
clients. It could then talk to the
single service-hosted Automation
object to get information to pass
back to clients (maybe in Variant
byte arrays or whatever). That
way, when the clients are started
from various machines, your

server machine will have small
DCOM applications popping up
every now and again, and one main
Automation object in a service,
doing the work.

Delphi 5 Easter Eggs

QDoes Delphi 5 have any new
Easter Eggs?

AThe Delphi Easter Eggs have
always been found in the

About box. Delphi 5 still supports
holding the Alt key down and typ-
ing DEVELOPERS, TEAM or QUALITY to
get varying lists of Inprise employ-
ees. However, I am pleased to say
that the appearance of these credit
lists is now much improved. In-
stead of simply scrolling some
names from the bottom to the top
of the About box, they have been
revamped with OpenGL support (if

installed, otherwise they
look the same as before).

The list now looks very
much like the introductory
scrolling text scene in the
Star Wars films (see Figure
5). In fact, so much is it
based on Star Wars that the
scrolling does not actually
appear in the About box
itself, but in a separate form
that is placed exactly over
the About box (notice that
the form in Figure 5 has a

EDBEngineError = class(EDatabaseError)
private
FErrors: TList;
function GetError(Index: Integer): TDBError;
function GetErrorCount: Integer;

public
constructor Create(ErrorCode: DbiResult);
destructor Destroy; override;
property ErrorCount: Integer read GetErrorCount;
property Errors[Index: Integer]: TDBError read GetError;

end;

EClinicError = class(Exception)
private
FRectangle: TRect;

public
constructor Create(const Rect: TRect);
//Making the rectangle record available
property Rectangle: TRect read FRectangle;

end;
...
constructor EClinicError.Create(const Rect: TRect);
begin
FRectangle := Rect;
//Calling one of the original constructors to set up the message
inherited CreateFmt('Bad rectangle (%d,%d)-(%d,%d)',
[Rect.Left, Rect.Top, Rect.Right, Rect.Bottom])

end;
...
raise EClinicError.Create(Application.MainForm.BoundsRect)

➤ Above: Listing 11 ➤ Below: Listing 12

maximise icon on its caption).
According to WinSight, the form’s
class name is TSWForm. No prizes for
guessing what SW stands for.

Whilst this OpenGL scrolling is
in itself quite nice, you should find
it more fun when you use the
cursor keys to spin the text left and
right, or make the text angle more
flat or straight up. Incidentally, if
you spin any of the scrolling lists
so far around that you would
expect to be able to see the text
backwards, you won’t. Instead,
you see the text: Use the Source,
Luke. This is a play on the famous
Obi-Wan Kenobi Star Wars quote,
suggesting that you gain much by
exploring the VCL source. Danny
Thorpe used this quote in the
introduction of his (sadly out of
print) book Delphi Component
Design.

One additional key combination
available in Delphi 5 is Alt+JEDI.
This gives brief information about
the Delphi JEDI (Joint Endeavour
of Delphi Innovators) project. The
About dialog normally has one
hyperlink label that takes you to
www.borland.com. Once you
invoke the Alt+JEDI Easter Egg
another hyperlink label becomes
visible, which takes you to
www.delphi-jedi.org (Figure 6).

➤ Figure 5: Star Wars credits.

➤ Figure 6: Delphi’s About box
with an extra hyperlink.

	Property Editor Question
	Page Control Query
	Customised Alias
	Customised Status Bar
	COM Server Components
	Fancy Font Dialog
	Multi-User Delphi Installation
	Components On The Clipboard
	Custom TLabel Component
	User-Defined Exceptions
	More On Active OLE Object
	Delphi 5 Easter Eggs

